

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reread, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reread and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [2019] [Corey Rayburn Yung]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

siMpLify

[image: _images/python-3.6-blue.svg]Python 3.6
[image: _images/siMpLify.svg]Build Status [https://travis-ci.org/with_precedent/siMpLify]

siMpLify offers tools to make data science more accessible, with a particular
emphasis on its use in academic research. To that end, the package avoids
programming jargon (when possible) and implements a unified code architecture
for all stages of a data science project. So, classes and methods for data
scraping, parsing, munging, merging, preprocessing, modelling, analyzing, and
visualizing use the same vocabulary so that siMpLify can be easily used and
extended.

siMpLify includes a high-level set of tools that allows users to mix and match various preprocessing methods and statistical models. It provides some unique custom methods and integrates classes and methods from packages such as scikit-learn, category-encoders, imblearn, xgboost, seaborn, and shap.

The siMpLify package uses an extended metaphor, which is familiar in computer
programming, as the basis for its overall structure: food preparation. Words
like ‘recipe’ and ‘cookbook’ appear with regularity in discussing computer code.
siMpLify extends this metaphor a bit further in the creation of its four core
packages:
1) Wrangler: harvests data from a variety of sources, cleans it, and prepares
it for consumption.
2) Analyst: using a cookbook of recipes derived from user selections, the Analyst
applies machine learning and preprocessing methods to data.
3) Critic: evaluates the results of recipes, offering appropriately-matched comparisons, summaries, and metrics.
4) Artist: aiding the Critic, the Artist creates visualizations of the data,
models, and model evaluation.

Why siMpLify?

Although scikit-learn has gone a long way toward unifying interfaces with many common machine learning methods, it is still quite clunky in many situations. Present shortcomings include:

	It doesn’t incorporate many tools for data that isn’t already tidy [https://vita.had.co.nz/papers/tidy-data.pdf].

	There is a needlessly convoluted process [https://github.com/scikit-learn-contrib/sklearn-pandas#transformation-mapping] for implementing transformers on a subset of columns. Whereas many packages include a “cols” argument, scikit-learn does not [https://medium.com/vickdata/easier-machine-learning-with-the-new-column-transformer-from-scikit-learn-c2268ea9564c].

	fit methods do not work with certain preprocessing algorithms (e.g., target encoding in category-encoders [https://github.com/scikit-learn-contrib/categorical-encoding/issues/104]) because scikit-learn does not allow the label data to be passed to a fit method.

	Pipeline and FeatureUnion lack a mix-and-match grid-search type system [https://buildmedia.implementthedocs.org/media/pdf/scikit-learn-enhancement-proposals/latest/scikit-learn-enhancement-proposals.pdf] for preprocessing, only for hyperparameter searches.

	It doesn’t directly use pandas dataframes despite various attempts to bridge the gap (e.g., sklearn_pandas [https://github.com/scikit-learn-contrib/sklearn-pandas]). This can cause confusion and difficulty in keeping feature names attached to columns of data because numpy arrays do not incorporate string names of columns. This is why, for example, default feature_importances graphs do not include the actual feature names [https://stackoverflow.com/questions/44511636/matplotlib-plot-feature-importance-with-feature-names].

	The structuring of scikit-learn compatible preprocessing algorithms to comply with the rigid .fit and .transform methods makes their use sometimes unintuitive.

	The process for implementing different transformers on different groups of data (test, train, full, validation, etc.) within a Pipeline is often messy and difficult [https://towardsdatascience.com/preprocessing-with-sklearn-a-complete-and-comprehensive-guide-670cb98fcfb9].

	Scikit-learn has no plans to offer GPU support [https://scikit-learn.org/stable/faq.html#will-you-add-gpu-support].

	Scikit-learn does not offer clear guidance to new users about how to sequence and combine its many methods into a preprocessing and machine learning workflow [https://scikit-learn.org/stable/modules/classes.html].

	Many great tools for machine learning, particularly in the category of “deep
learning” simply are not designed to be compatible with Scikit-learn.

siMpLify provides a cleaner, universal set of tools to access the many useful methods from scikit-learn and other python packages. The goal is to make machine learning more accessible to a wider user base. Simplify also adds numerous unique methods and functions for common machine learning and feature engineering workers. In addition to those custom scripts, siMpLify incorporates and provides a universal API for methods and classes from the following packages:

	scikit-learn [https://github.com/scikit-learn/scikit-learn]

	xgboost [https://github.com/dmlc/xgboost]

	tensorflow [https://github.com/tensorflow/tensorflow]

	imbalanced-learn [https://github.com/scikit-learn-contrib/imbalanced-learn/tree/master/imblearn]

	categorical-encoding [https://github.com/scikit-learn-contrib/categorical-encoding]

	scikit-optimize [https://github.com/scikit-optimize/scikit-optimize/tree/master/skopt]

	seaborn [https://github.com/mwaskom/seaborn]

	shap [https://github.com/slundberg/shap]

	matplotlib [https://github.com/matplotlib/matplotlib]

	eli5 [https://github.com/TeamHG-Memex/eli5]

	scikitplot [https://github.com/reiinakano/scikit-plot]

The siMpLify Plan

To understand a typical use-case for siMplify, let’s examine a project that omits the Wrangler stage and proceeds directly to preprocessing and modeling. At the end of this discussion of the general process, an example using the Wisconsin breast cancer data is included.

siMpLify Analyst

As an example of siMpLify’s functionality, let’s review the Analyst subpackage. It allows users to create a cookbook of dynamic recipes that mix-and-match feature engineering and modeling dataset based upon a common, simple interface. It then analyzes the results using selected, appropriate metrics and exports tables, charts, and graphs compatible with the models and data types.

By default, the Analyst divides the feature engineering and modeling process into eight major steps that can be sequenced in different stepss (or supplemented with
custom steps and steps):

	Scale: converts numerical features into a common scale, using scikit-learn methods.

	Split: divides data into train, test, and/or validation sets once or iteratively through k-folds cross-validation.

	Encode: converts categorical features into numerical ones, using category-encoders methods.

	Mix: converts selected features into new polynomial features, using PolynomialEncoder from category-encoders or other mathmatical combinations.

	Cleave: creates different subgroups of features to allow for easy comparison between them. This stage is of particular importance to academic research and has
largely been omitted from existing efforts to simplify machine learning.

	Sample: synthetically resamples training data for imbalanced data, using imblearn methods, for use with models that struggle with imbalanced data.

	Reduce: selects features recursively or as one-shot based upon user criteria, using scikit-learn and prince methods.

	Model: implements machine learning algorithms. The user can opt to either test different hyperparameters for the models selected or a single set of hyperparameters. Hyperparameter earch methods currently include RandomizedSearchCV, GridSearchCV, and bayesian optimization through skopt.

siMpLify Critic

As part of any machine learning workflow, assessment of prepared models is an essential entity. The Critic subpackage divides the evaluation process into four major stages:

	Summarize: building beyond the pandas describe method, this step includes a wide number of summary statistics for the user data, appropriately calculated based upon the data type of a particular variable.

	Score: automatically determining the compatibility of various scikit-learn and/or user-provided metrics, results for each recipe are calcuated.

	Evaluate: using explainers from shap, skater, and eli5, the various recipes are evaluated, feature importances calculated, and cumulative comparisons are made.

	Report: the above stages are compiled into appropriate reports which are exported to disk or, in some cases, outputted to the terminal.

siMpLify Artist

Based upon the user selections and analysis done by the Critic, a set of visualizations is created for each recipe and as comparisons between recipes. Currently, this subpackage utilizes matplotlib, seaborn, shap, and a few other packages to make the visualization process easy using a common interface.

siMpLify in Action - an Example

Perhaps the easiest, but not only, way to input user selections into the siMpLify package is by creating a simple text file (using the ‘ini’ format). This allows siMpLify to be used by beginner and advanced python programmers equally.

For example, using the settings file, a user could create a cookbook of recipes simply by listing the strings mapped to different methods:

[cookbook]
data_to_use = train_test
model_type = classifier
label = target
calculate_hyperparameters = True
naming_classes = model, cleaver
export_all_recipes = True
cookbook_steps = scaler, splitter, encoder, mixer, cleaver, sampler, reducer, model
scaler = normalizer, minmax
splitter = train_test
encoder = target
mixer = polynomial
cleaver = none
sampler = smote, adasyn
reducer = none
model = xgboost, logit

With the above settings, all possible recipes are automatically created using either default or user-specified parameters. In total, there are eight recipes in the cookbook because two options are selected for the scaler, encoder, and model. Simply listing multiple choices separated by a comma is all that is needed for siMpLify to include and test different options.

siMpLify can also import hyperparameters from the text file, as illustrated below for the xgboost model:

[xgboost]
booster = gbtree
objective = binary:logistic
eval_metric = aucpr
silent = True
n_estimators = 50, 1000
max_depth = 5, 15
learning_rate = 0.001, 0.1
subsample = 0.3
colsample_bytree = 0.3
colsample_bylevel = 0.3
min_child_weight = 0.7, 1.0
gamma = 0.0, 0.2
alpha = 0.0, 0.2

In the above case, anywhere two values are listed separated by a comma, siMpLify automatically implements a hyperparameter search between those values (using the search method specified elsewhere in settings). If just one hyperparameter is listed, it stays fixed throughout the tests. Further, the hyperparameters are automatically linked to the ‘xgboost’ model by including that model name in the settings file. Further, if the ‘gpu’ setting is set to True (in the ‘general’ section of the settings file), the additional parameters needed to make xgboost use the local NVIDIA GPU will automatically be added.

The examples folder, from which the above settings are taken, currently shows how simplify works in analyzing the Wisconsin breast cancer database. The code for the analysis is relatively straightforward and simple:

import os

import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer

from simplify import Idea, filer, Dataset
from simplify.analyst import Cookbook

Loads cancer data and converts from numpy arrays to pandas dataframe.
cancer = load_breast_cancer()
df = pd.DataFrame(np.c_[cancer['data'], cancer['target']],
 columns = np.append(cancer['feature_names'], ['target']))
Initializes core simplify classes.
idea = Idea(configuration = os.path.join(os.getcwd(), 'examples',
 'cancer_settings.ini'))
filer = filer(root_folder = os.path.join('..', '..'))
dataset = Dataset(df = df)
Converts label to boolean type - conversion from numpy arrays leaves all
columns as float type.
dataset.change_datatype(columns = 'target', datatype = 'boolean')
Fills missing dataset with appropriate default values based on column
datatype.
dataset.smart_fill()
Creates instance of Cookbook which, by default, will automatically create
all recipes from the settings file.
cookbook = Cookbook(dataset = dataset)
Iterates through every recipe and exports plots, explainers, and other
metrics from each recipe.
cookbook.implement()
Saves the recipes, results, and cookbook.
cookbook.save_everything()
Outputs information about the best recipe to the terminal.
cookbook.print_best()
Saves dataset file with predictions or predicted probabilities added
(based on options from the settings file).
cookbook.dataset.save(file_name = 'cancer_df')

That’s it. From that, all possible recipes are created. Each recipe gets its own folder within the results folder with relevant plots, a confusion matrix, and a classification report. A complete results file (review.csv) and summary statistics from the data (data_summary.csv) are stored in the results folder. Pickled cookbooks and recipes are also included if the user selects that option. In the above example, these are some of the plots automatically created for one of the recipes:

[image: visuals/confusion_matrix.png.png?raw=true]
[image: visuals/pr_curve.png.png?raw=true]
[image: visuals/roc_curve.png.png?raw=true]
[image: visuals/shap_heat_map.png.png?raw=true]
[image: visuals/shap_summary.png.png?raw=true]
[image: visuals/shap_interactions.png.png?raw=true]

New examples will be added showing different models and the Wrangler subpackage in the near future.

Contribution Guidelines

siMpLify uses a code structure patterned after the writing process. Each major subpackage in the siMpLify package (Wrangler, Analyst, Explorer, Critic, Artist)creates a Book object which contains particular implementations (Chapters) which have one or more steps (Repository).

Wrangler creates an Manual of Plans.
Analyst creates a Cookbook of Recipes.
Explorer creates a Ledger of Summaries.
Critic creates a Collection of Reviews.
Artist creates a Canvas of Illustrations.

siMpLify is fully extensible. Additional subpackages, Books, Chapters, and Repository can be added to a Project. To contribute to siMpLify, please follow these basic rules:

Style

	The project generally follows the Google Style Guide for python:
https://google.github.io/styleguide/pyguide.html
It is particularly important for contributions to follow the Google style for docstrings so that sphinx napoleon can automatically incorporate the docstrings into online documentation.

	Explicitness preferences are heightened beyond PEP8 guidelines. Varible names should be verbose enough so that there meaning is clear and consistent. Annotations (using python 3.7+) should always be used in arguments and docstrings. As siMpLify is intended to be used by all levels of coders (and by non-coders as well), it is important to make everything as clear as possible to someone seeing the code for the first time. List and dict comprehensions are disfavored. If there are significant speed advantages to using a comprehension,
please wrap them in a function or method (as with the ‘add_suffix’ and ‘add_prefix’ functions in simplify.core.utilities).

	Follow the package naming conventions. All abstract base classes begin with the prefix ‘Simple’. Generally, siMpLify tries to avoid cluttering user namespace with commonly used object names (an exception was made for the ‘apply’ method).

	siMpLify follows an object-oriented approach because that makes integration with scikit-learn and general modularity easier. Contributions are not precluded from using other programming styles, but class wrappers might be needed to interface properly with the overall siMpLify structure. In fact, the interfaces for deep learning packages are largely wrappers for functional programming.

Structure

	All base classes should have a similar interface of methods. Each base class divides processes into three stages, again patterned after the writing process which are the core methods used throughout the siMpLify package:

	draft: sets default attributes (required).

	publish: finalizes attributes after any runtime changes. (required).

	apply: applies selected options to passed arguments (optional).

Any new subpackages, Books, Chapters, and Repository should follow a similar template. All classes within siMpLify should use the new @dataclass accessor to minimize boilerplate code (introduced in python 3.7)

	siMpLify lazily (runtime) loads most external and internal modules. This is done to lower overhead and incorporate “soft” dependencies. As a result, contributions hould follow these general idioms for importing objects within modules.

For Book-level classes, all potentially importable objects should be stored in a dict called ‘options’. Each entry in ‘options’ should follow this format:

 {key(str): (module_path(str), object_name(str))}

Then, to import the needed object, use this general code:

 from importlib import import_module

 getattr(import_module(self.workers[key][0]), self.workers[key][1])

For Technique-level classes, a special class has been created to construct needed external and internal objects. It is the Option class in the Contributor module. Follow the documentation there for creating Repository.

Chapters should not require an module importation.

	siMpLify favors coomposition over inheritance and makes extensive use of the composite and builder design patterns. Inheritance is used, and only allowed from the abstract base classes that define a particular grouping of classes. For example, the Book, Chapter, and Technique classes inherit from Manuscript to allow for sharing of common methods.

	When composing objects through a loosely coupled hierarchy, it is important to provide connections in both directions. For example, the Chapter class has methods to ‘add_technique’ and ‘add_book’ which automatically change local attributes (‘techniques’ and ‘book’) accordingly. This is done so that any class in a composite tree can access attributes from other classes in that tree without passing numerous arguments.

siMpLify Worker

	All file management should be perfomed throught the shared Filer instance.

	All external settings should be imported and constructed using the shared ‘Idea’ instance. To inject matching attributes from the Idea instance, use this idiom from a subclass with the Idea instance stored at ‘idea’:

self = self.idea.apply(instance = self)

	All external data should be contained in instances of Dataset. Before beginning the processes in Analyst, ideally, there should be a single, combined pandas DataFrame stored in the Dataset instance at the ‘df’ attribute.

	Any generally usable functions or decorators should be stored in simplify.core.utilities.

	If you create a proxy for typing, please subclass the SimpleType class in simplify.core.definitionsetter, if possible.

	State management is currently handled by classes in simplify.core.states, but are typically accessed indirectly. The overall ‘worker’ attribute is an attribute to a Filer instance and ‘data_state’ is an attribute to an Dataset instance.

General

	When in doubt, copy. All of the core subpackages follow these rules. If you are starting a new object in siMpLify, the safest route is just to copy an analagous class (and related import statements) into a new module and go from there.

	Add any new soft or hard dependencies to the requirements.txt and yaml environment files in the root folder of the package. Even though there is a risk to the approach, siMpLify favors importation over integration of open-source code. This allows updates to those external dependencies to be seamlessly added into a siMpLify workflow. This can create problems when constructing virtual python environments, but, absent special circumstances, importatiion is preferred.

	If you have a great idea that is inconsistent with these guidelines, email Corey Yung directly. We are always looking for ways to improve siMpLify and are open to amending or discarding various contribution guidelines if they are stifling innovation.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

